Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas.
نویسندگان
چکیده
Thrombolites are unlaminated carbonate build-ups that are formed via the metabolic activities of complex microbial mat communities. The thrombolitic mats of Highborne Cay, Bahamas develop in close proximity (1-2 m) to accreting laminated stromatolites, providing an ideal opportunity for biogeochemical and molecular comparisons of these two distinctive microbialite ecosystems. In this study, we provide the first comprehensive characterization of the biogeochemical activities and microbial diversity of the Highborne Cay thrombolitic mats. Morphological and molecular analyses reveal two dominant mat types associated with the thrombolite deposits, both of which are dominated by bacteria from the taxa Cyanobacteria and Alphaproteobacteria. Diel cycling of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) were measured in all thrombolitic mat types. DO production varied between thrombolitic types and one morphotype, referred to in this study as 'button mats', produced the highest levels among all mat types, including the adjacent stromatolites. Characterization of thrombolite bacterial communities revealed a high bacterial diversity, roughly equivalent to that of the nearby stromatolites, and a low eukaryotic diversity. Extensive phylogenetic overlap between thrombolitic and stromatolitic microbial communities was observed, although thrombolite-specific cyanobacterial populations were detected. In particular, the button mats were dominated by a calcified, filamentous cyanobacterium identified via morphology and 16S rRNA gene sequencing as Dichothrix sp. The distinctive microbial communities and chemical cycling patterns within the thrombolitic mats provide novel insight into the biogeochemical processes related to the lithifying mats in this system, and provide data relevant to understanding microbially induced carbonate biomineralization.
منابع مشابه
Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas.
Microbialites, which are organosedimentary structures formed by microbial communities through binding and trapping and/or in situ precipitation, have a wide array of distinctive morphologies and long geologic record. The origin of morphological variability is hotly debated; elucidating the cause or causes of microfabric differences could provide insights into ecosystem functioning and biogeoche...
متن کاملInner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling
Microbialites are sedimentary deposits formed by the metabolic interactions of microbes and their environment. These lithifying microbial communities represent one of the oldest ecosystems on Earth, yet the molecular mechanisms underlying the function of these communities are poorly understood. In this study, we used comparative metagenomic and metatranscriptomic analyses to characterize the sp...
متن کاملFormation and diagenesis of modern marine calcified cyanobacteria.
Calcified cyanobacterial microfossils are common in carbonate environments through most of the Phanerozoic, but are absent from the marine rock record over the past 65 Myr. There has been long-standing debate on the factors controlling the formation and temporal distribution of these fossils, fostered by the lack of a suitable modern analog. We describe calcified cyanobacteria filaments in a mo...
متن کاملMicrobial mat controls on infaunal abundance and diversity in modern marine microbialites.
Microbialites are the most abundant macrofossils of the Precambrian. Decline in microbialite abundance and diversity during the terminal Proterozoic and early Phanerozoic has historically been attributed to the concurrent radiation of complex metazoans. Similarly, the apparent resurgence of microbialites in the wake of Paleozoic and Mesozoic mass extinctions is frequently linked to drastic decl...
متن کاملMicrobial Diversity in Modern Stromatolites
Poised at the biosphere–lithosphere interface, the microbial consortia associated with stromatolites have a profound impact on the evolution of Earth’s environment. In this chapter, we review the current state of knowledge of microbial diversity in extant stromatolites by examining data generated using cultivationindependent molecular techniques. Specifically, we compare natural stromatolitic m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geobiology
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2010